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With AlphaFold-DB, we now have 214M structures
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It actually looks like this

1100x

23TB

PDB

AFDB

3



Not-too-distant future
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>100TB
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>100TB

Dealing huge data is quite painful



AFDB
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It takes time,

23TB / 100Mbps = 21.3 days
         / 500Mbps = 4.26 days 

Dealing huge data is quite painful



AFDB
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4TB 4TB 4TB 4TB 4TB 4TB

It takes time, storage,
Dealing huge data is quite painful

https://www.pngfind.com/pngs/m/254-2540354_seagate-2tb-hard-disk-hd-png-download.png
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4TB

$0.023/GB *
23000GB = $529

$80 * 6 = $480 

AWS S3
https://aws.amazon.com/s3/pricing/

It takes time, storage, and money.
Dealing huge data is quite painful

AFDB



Initial idea on this problem

With the protein structure prediction problem solved, 
millions of high-resolution protein structures will 
become available.

The current PDB format needs to much memory to 
cope with the expected deluge of structural data.

We need a 10x compressed format with interfaces to 
common tools.

Our idea is to encode structures using the dihedral 
angles of the backbone and the side chains.
The atomic coordinates can then be regenerated 
from the dihedral angles using the NERF algorithm
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Varadi, M et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research (2022).
Zeming Lin et al., Evolutionary-scale prediction of atomic-level protein structure with a language model.Science379, 1123-1130(2023).
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With the protein structure prediction problem 
solved, millions of high-resolution protein structures 
will become available.

The current PDB format needs to much memory to 
cope with the expected deluge of structural data.

We need a 10x compressed format with interfaces to 
common tools.

Our idea is to encode structures using the dihedral 
angles of the backbone and the side chains.
The atomic coordinates can then be regenerated 
from the dihedral angles using the NERF algorithm

214M

>700M

Huge structure databases
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With the protein structure prediction problem 
solved, millions of high-resolution protein structures 
will become available.

The current PDB format needs to much memory to 
cope with the expected deluge of structural data.

We need a 10x compressed format with interfaces to 
common tools.

Our idea is to encode structures using the dihedral 
angles of the backbone and the side chains.
The atomic coordinates can then be regenerated 
from the dihedral angles using the NERF algorithm

214M

>700M

Huge structure databases
take huge spaces

15T  ./esmatlas
40T  ./esmatlas_decomp
3.0T ./metabuli
3.2T ./foldseek
1.3T ./foldcomp
1.1T ./afv4_upload

24T  ./alphafold_v4
985G ./mmseqs
94G  ./colabfold



Initial idea embodied
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With the protein structure prediction problem solved, 
millions of high-resolution protein structures will 
become available.

The current PDB format needs to much memory to 
cope with the expected deluge of structural data.

We need a 10x compressed format with interfaces 
to common tools.

Our idea is to encode structures using the dihedral 
angles of the backbone and the side chains.



NeRF to convert from internal to cartesian coordinates
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With the protein structure prediction problem solved, 
millions of high-resolution protein structures will 
become available.

The current PDB format needs to much memory to 
cope with the expected deluge of structural data.

We need a 10x compressed format with interfaces to 
common tools.

Our idea is to encode structures using the dihedral 
angles of the backbone and the side chains.
The atomic coordinates can then be regenerated 
from the dihedral angles using the NERF algorithm

Natural Extension Reference Frame



Goals to achieve
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High compression ratio Little loss (RMSD)

Original
Decompressed

High speed

gzip
foldcomp



Goals to achieve
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High compression ratio Little loss (RMSD)

Original
Decompressed

High speed

gzip
foldcompTo reduce loss, 

it requires more memory



Bond angle should be encoded
to reduce loss

The less, the better

Problem #1 for loss: Bond angles are not constants
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RMSD between original & decompressed structures

RMSD after superposition



Bond angle should be encoded
to reduce loss

Problem #1 for loss: Bond angles are not constants
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Picked optimal bit combinations to encode 
bond angles and torsion angles with least 
RMSD
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Angle encoding – 8 bytes for backbone



Before

average 1.258

stdev 2.117

max 10.685

min 0.036

Problem #2: Discontinuity in backbone
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Visualization by Dongwook Kim

Reduced outliers by saving 3 previous atoms before unexpected breaks



Before After

average 1.258 0.377

stdev 2.117 0.304

max 10.685 1.769

min 0.036 0.036

Reduced outliers by saving 3 previous atoms before unexpected breaks

Solution for Problem #2

20



ID RMSD NUM_RESIDUES RMSD_PER_RESIDUE

AF-A0A7M4B2U1-F1 0.264447179 118 0.002241078

AF-A0A0B7P221-F1 0.112702449 28 0.004025087

AF-A0A0B7P3V8-F1 2.891385114 1104 0.002619008

AF-A2P2R3-F1 0.334499574 262 0.001276716

AF-A5Z2X5-F1 0.154160499 72 0.002141118

Problem #3: Loss accumulated as peptides get longer

Higher deviation in latter position

21



Solution for Problem #3

Bi-direction +Weighted avg

Single NeRF

Forward NeRF Reverse NeRF

Weighted average of coordinates
from bi-directional NeRF

22

RMSD per residue between original & decompressed structures



Solution for Problem #3

Anchor Anchor

Forward NeRF Reverse NeRF

Internal anchor points to reset error accumulation

Save every 25 AA

C-alpha RMSD: 0.134
Backbone RMSD: 0.134
All RMSD: 0.181
17511 bytes

Save every 200 AA

C-alpha RMSD: 0.995
Backbone RMSD: 0.995
All RMSD: 0.995
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Solution for Problem #5

ISMB2022 ISMB2023
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- Optimizing memory usage
- Finding out bottlenecks in the process

Running time
avg. 0.061s

Milot Mirdita



Restore
coordinates

Write PDB

Read fcz

Decompression

Anchor Anchor
Forward NeRF Reverse NeRF

Reconstruct
N times

x
y
z

x
y
z

N Cα C
x
y
z

x
y
z

x
y
z

N Cα C
x
y
z

Reconstruction using anchors and NeRFCompression
Cartesian to 

anchored internal Write fczRead 
PDB/CIF

FCZ format

Torsion angles 
35 bit

Bond angles 
24 bit

𝜒1
Side chain angles (~40 bit)

AA
5 bit

R
Each residue:  ~13 bytes

Z
Y
X

Z
Y
X

Z
Y
X

N Cα C

Anchor at 25th, 36 bytes

+
𝜒2 𝜒5𝜒3 𝜒4

Foldcomp efficiently save internal coordinates and restore 
coordinates with bi-directional NeRF
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0.01 second 10% of gzip loss < 0.1 Å

Saving this structure requires
41.6 KB instead of 1.75 MB PDB

AF-Q06179-F1 (FMP27-YEAST)
2,628 AAs 

21,382 atoms

RMSD
Backbone: 0.079Å
Total: 0.14Å 

Foldcomp has the best compression rate while being 
nearly as fast as gzip in decompression
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23TB

1.1TB

Need HPC to work on it

Work on your workstation

Foldcomp compressed AlphaFold-DB into 1 disk
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Foldcomp compressed AlphaFold-DB into 1 disk
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fczfczFCZs

IndexFCZ entries

N FCZ

…

1 FCZ

N 44849 ..

…

1  0  1612

N AF-PZ...

…

1  AF-Q0..

Lookup

start & size name
Loose files (.fcz)

Foldcomp 
database

Applied MMseqs2 database format to reduce 
unnecessary padding bytes used in TAR,
which also reduced overhead from file numbers

214,684,311

5

File system overhead

Iterable & searchable



https://github.com/steineggerlab/foldcomp

Foldcomp
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https://doi.org/10.1093/bioinformatics/btad153

foldcomp compress some.pdb
foldcomp decompress other.fcz

Supports pdb, cif, tar,
tar.gz, directory, file list



Python API
- fast access
- DB downloads

https://foldcomp.steineggerlab.workers.dev/

pip install foldcomp 

Publicly available
databases
- AlphaFold DB
- ESMatlas

Publicly available: Python API & Foldcomp DBs

Alphafold db: 1.1TB
ESM atlas   : 1.8TB
Swissprot : 2.9GB



Fast and accurate protein structure search
with Foldseek

Foldseek

https://www.nature.com/articles/s41587-023-01773-0



FoldMason:
Comparative protein 
structure analysis in 
the era of next 
generation 
structure predictions

Foldseek

Summary
• Built on top of Foldseek, our fast protein 

structure aligner 
• Generates Multiple Sequence Alignments 

(MSAs) of protein structures, not just 
sequence
• Comparable accuracy to gold-standard 

structure MSA tools, but faster
• Freely available on Github

FoldMason:
Comparative protein structure analysis in the era of next generation 
structure predictions
Cameron L.M. Gilchrist1, Martin Steinegger1,*

1School of Biological Sciences, Seoul National University, Seoul, South Korea

Introduction
Recent advancements in 3D protein structure prediction, such as
AlphaFold2, have revolutionized structural biology by pushing the
boundaries of exploration beyond the "twilight zone" of amino acids.
However, the abundance of available protein structures presents a
scalability challenge for current comparative alignment tools. To address
this, we introduce FoldMason, an alignment method built on Foldseek,
designed to handle large sets of monomeric protein structures, enabling
comprehensive analysis of this vast structural data.

Multiple protein structure alignment

References
1. van Kempen, M., Kim, S. S., Tumescheit, C., Mirdita, M., Lee, J., Gilchrist, C. L. M., Söding, J. & 

Steinegger, M. Nat Biotechnol 1–4 (2023).
2. Mizuguchi, K., Deane, C. M., Blundell, T. L. & Overington, J. P. Protein Science 7, 2469–2471 (1998).
3. Steinegger, M. & Söding, J. Nat Biotechnol 35, 1026–1028 (2017).

School of Biological Sciences 
Seoul National University
snu.ac.kr

Comparable accuracy to gold-standard tools

LDDT as a reference-free MSA quality metric

Low number of 
structures per 

family

Majority of 
structures 

are small

LDDT correlates with 
commonly used metrics

MSA Local Distance Difference Test (LDDT)

Input MSA Pairwise sub-alignments
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Foldseek databases
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Split

Re-align

Iterations 
< N

Yes

No

LDDT 
Improved

Yes

No

Keep Replace

Final MSA

Read AA/3Di Sequence Global alignment
of PSSMs

LDDT-based MSA refinement
from refinemsa module

Average over 
ALL columns 

in MSA

Average over 
columns with ≧2 

residues

Distance Matrix

Database: tmp/latest/structures
MSA file: asdf.fa
MSA LDDT: 0.45344
Alphabet: AA

Score: LDDT

Match ratio: 0.05

Line length: 110

Save alignment

d1cqxa1 ----------MLTQKTKDIVKATAP-VLAE---HGYDIIKCFYQRMFEAHPELKNV-FNMA--HQ-------E-----Q--GQQQQALARAVYAYAENIEDP--N---SL 74
d1ecaa_ -----------LSADQISTVQASFD-KVKG-------DPVGILYAVFKADPSIMAKFTQFAGKDL--ES---I-----KGTAPFETHANRIVGFFSKIIGELP-----NI 76
d1tu9a_ --------------NAADRVMQSYG-RCC----ASTGFFDDFYRHFLASSPQIRAKF----------------------ATTDMTAQKHLLRAGIMNLVMYA--R--GMS 65
d3mkbb_ ---------VHWTQEERDEIVKTF---FSA---NSSAIGTKALERMFVVFPWTNAYFAKF----------------------SASIHAAIVVGALQDAVKHE--D---DV 68
d1x9fd_ ----------ECLVTESLKVKLQWA-SAFGHAHERVAFGLELWRDIIDDHPEIKAP---FS--RV--RG--DN-----IYSPEFGAHSQRVLSGLDITISML--DTPDML 83
d1x9fc_ -------HEHCCSEEDHRIVQKQWD-ILWRSSKIKIGFGRLLLTKLAKDIPEVNDL---FK--RV--DI--EH-----AEGPKFSAHALRILNGLDLAINLL--DDPPAL 86
d1itha_ ----------GLTAAQIKAIQDHWFLNIKG---CLQAAADSIFFKYLTAYPGDLAFFHKFS--SVPLYG---L-----RSNPAYKAQTLTVINYLDKVVDAL--G--GNA 83
d1hlba_ GTLAIQAQG-DLTLAQKKIVRKTWH-QLMR---NKTSFVTDVFIRIFAYDPSAQNKFPQMAGMSA--SQ---L-----RSSRQMQAHAIRVSSIMSEYVEE-LDS--DIL 92
d1mbaa_ ----------SLSAAEADLAGKSWA-PVFA---NKNANGLDFLVALFEKFPDSANFFADFKGKSV--AD---I-----KASPKLRDVSSRIFTRLNEFVNNAANA--GKM 84
d3g46a_ --PSVYDAAAQLTADVKKDLRDSWK-VIGS---DKKGNGVALMTTLFADNQETIGYF--KRLGDV--SQ---G-----MANDKLRGHSITLMYALQNFIDQLDNP--DDL 90
d1cg5b_ ---------VKLSEDQEHYIKGVWK-DV-----DHKQITAKALERVFVVYPWTTRL-FKLQNDIG-------V-----Q---QHADKVQRALGEAIDDLK-K-------V 71
d2w72b_ ---------MHLTPEEKSAVTALWG-KV-----NVDEVGGEAYGRLLVVYPWTQRFFESFG--DL-------STPDAVMGNPKVKAQGKKVLGAFSDGLAHL--D---NL 81
d3lb2a_ ------------------GFKQDIA-TIRG---DLRTYAQDIFLAFLNKYPDERRYFKNYVGKSD--QE---L-----KSMAKFGDHTEKVFNLMMEVADRATDC--VPL 76
d1cg5a_ ----------VLSSQNKKAIEELGN-LIKA---NAEAWGADALARLFELHPQTKTYFSKFS--GF-------E-----ACNEQVKKHGKRVMNALADATHHL--D---NL 77
d2nrla_ -------------A-DFDAVLKCWG-PVEA---DYTTIGGLVLTRLFKEHPETQKLFPKFA--GIAQAD---I-----AGNAAVSAHGATVLKKLGELLKA---K--GSH 77
d1q1fa_ -------------RPESELIRQSWR-VVSR---SPLEHGTVLFARLFALEPSLLPLFQYNG-RQF--SSPEDS-----LSSPEFLDHIRKVMLVIDAAVTNV--EDLSSL 83
d3boma_ ----------SLSAKDKANVKAIWG-KILP---KSDEIGEQALSRMLVVYPQTKAYFSHWA--SV-------A-----PGSAPVKKHGITIMNQIDDCVGHM--D---DL 77
d2gdma_ -------G--ALTESQAALVKSSWE-EFNA---NIPKHTHRFFILVLEIAPAAKDLFSFLK--GT--SE--VP-----QNNPELQAHAGKVFKLVYEAAIQ---LEVTGV 83
d1urva_ ----------ELSEAERKAVQAMWA-RLYA---NSEDVGVAILVRFFVNFPSAKQYFSQFK--HM--EDPLEM-----ERSPQLRKHASRVMGALNTVVENL--HDPDKV 85
d1asha_ ------------ANKTRELSLEHAKVDTSN---EARQDGIDLYKHMFENYPPLRKYFKSRE--EYTAED---V-----QNDPFFAKQGQKILLACHVLCATY--DDRETF 83
d1b0ba_ ----------XLSAAQKDNVKSSWA-KASA---AWGTAGPEFFMALFDAHDDVFAKFGLFSGAAK--GT---V-----KNTPEMAAQAQSFKGLVSNWVDNLDNA--GAL 84
d1h97a_ ----------TLTKHEQDILLKELG-PHPA---HIVETGLGAYHALFTAHPQYISHFSRLEGHTI--EN---V-----MQSEGIKHYARTLTEAIVHMLKEISND--AEV 84
d1or4a_ ADVKKQLKMVRLGDAELYVLEQLQP-LIQE---NIVN-IVDAFYKNLDHESSLMDIINDHS--SV--DR---L-----K--QTLKRHIQEM------FAGVI--D--DEF 81
d1it2a_ ------IDQGPLTDGDKKAINKIWP-KIYK---EYEQYSLNILLRFLKCFPQAQASFPKFT--KK--SN---L-----EQDPEVKHQAVVIFNKVNEIINSMDNQ--EEI 86
d1jl7a_ ----------GLSAAQRQVVASTWK-DIAG---AGAGVGKECLSKFISAHPEMAAV----F--GF--SG---------ASDPGVAELGAKVLAQIGVAVSHL--GDEGKM 77
d1naza_ ---------MVLSEGEWQLVLHVWA-KVEA---DVAGHGQDIYIRLFKSHPETLEKFDRFK--HL-------KTEAEMKASEDLKKQGVRVLTALGAILKKK--G---HH 83

d1cqxa1 MAVLKNIANKH--ASLGVKPEQYPIVGEHLLAAIKEVLGNAATDDIISAWAQAYGNLADVLMGM-ESEEQPGG 144
d1ecaa_ EADVNTFVAS--HKPRGVTHDQLNNFRAGFVSYMK-AHT--DFAGAEAAWGATLDTFFGMIFS-----KM--- 136
d1tu9a_ DSKLRALGASS-RAALDIRPELYDLWLDALLMAVAE-HDRDCDAETRDAWRDVMGRGIAVIKSYYG-S----- 130
d3mkbb_ KAEFVNISKAH-ADKLHIDPGSFHLLTDSFIVELAHLKKVAFTPFVFAVWIKFFQVVIDAISSQ-YH------ 133
d1x9fd_ AAQLAHLKVQH-VER-NLKPEFFDIFLKHLLHVLGDRL-GHFDF---GAWHDCVDQIIDGIK----------- 139
d1x9fc_ DAALDHLAHQH-EVREGVQKAHFKKFGEILATGLPQVL-DDYDA---LAWKSCLKGILTKISSR-L------- 146
d1itha_ GALMKAKVPSH-DA-MGITPKHFGQLLKLVGGVFQEEF--SADPTTVAAWGDAAGVLVAAM-K---------- 141
d1hlba_ PELLATLART--HDLNKVGADHYNLFAKVLMEALQAELG--SNEKTRDAWAKAFSVVQAVLVK-----HG--- 153
d1mbaa_ SAMLSQFAKE--HVGFGVGSAQFENVRSMFPGFVASVAA--PPAGADAAWTKLFGLIIDALKA-----AGA-- 146
d3g46a_ VCVVEKFAVN--HITRKISAAEFGKINGPIKKVLASKNF--GDKY-ANAWAKLVAVVQAAL------------ 146
d1cg5b_ EINFQNLSGKH--QEIGVDTQNFKLLGQTFMVELALHYKKTFRPKEHAAAYKFFRLVAEALSSN-Y-H----- 135
d2w72b_ KGTFATLSELH-CDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKY----H--- 146
d3lb2a_ ASDANTLVQM--KQHSSLTTGNFEKLFVALVEYMRASGQ--SF--DSQSWDRFGKNLVSALSS-----AGMK- 137
d1cg5a_ HLHLEDLARKH-GENLLVDPHNFHLFADCIVVTLAVNLQA-FTPVTHCAVDKFLELVAYELSSCYR------- 141
d2nrla_ AAILKPLANSH-ATKHKIPINNFKLISEVLVKVMQEKA--GLDAGGQTALRNVMGIIIADLEANYK-EL-GFS 145
d1q1fa_ EEYLTSLGRKH--RAVGVRLSSFSTVGESLLYMLEKSLGPDFTPATRTAWSRLYGAVVQAMSRG-WDG----- 148
d3boma_ FGFLTKLSELH-ATKLRVDPTNFKILAHNLIVVIAAYFPAEFTPEIHLSVDKFLQQLALALAEK-YR------ 142
d2gdma_ DATLKNLGSVH--VSKGVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMD-DAA--- 150
d1urva_ SSVLALVGKAH-ALKHKVEPVYFKILSGVILEVVAEEFASDFPPETQRAWAKLRGLIYSHVTAAYK-EVGW-- 154
d1asha_ NAYTRELLDRHARDHVHMPPEVWTDFWKLFEEYLGKKT--TLDEPTKQAWHEIGREFAKEINK---------- 144
d1b0ba_ EGQCKTFAAN--HKARGISAGQLEAAFKVLAGFMK-SYG--G---DEGAWTAVAGALMGMIRP-----DM--- 141
d1h97a_ KKIAAQYGKD--HTSRKVTKDEFMSGEPIFTKYFQN-LV--KDAEGKAAVEKFLKHVFPMMAA-----EI--- 144
d1or4a_ IEKRNRIASI--HLRIGLLPKWYMGAFQELLLSMIDIYEASTNQQELLKAIKATTKILNLEQQLVL-E----- 146
d1it2a_ IKSLKDLSQKH-KTVFKVDSIWFKELSSIFVST------IDGGA----EFEKLFSIICILLRSA-Y------- 140
d1jl7a_ VAEMKAVGVRHGYGNKHIKAEYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYGDISGALISG-LQS----- 144
d1naza_ EAELKPLAQSH-ATKHKIPIKYLEFISEAIIHVLHSRHPGNFGADAQGAMNKALELFRKDIAAKYK-ELGYQG 154

Foldseek MSA file:///Users/gamcil/repos/foldseek/exdb.html

1 of 1 2023/07/05 5:09 pm

AA 3Di

Foldseek databases

Guide Tree

https://github.com/gamcil/foldseek



Clustering predicted structures at the
scale of the known protein universe

Foldseek

https://www.biorxiv.org/content/10.1101/2023.03.09.531927v1

Clustering predicted structures at the 
scale of the known protein universe
Inigo Barrio-Hernandez1*, Jingi Yeo2*, Jürgen Jänes3, Milot Mirdita2, Cameron L.M. Gilchrist2,  
Tanita Wein4, Mihaly Varadi1, Sameer Velankar1, Pedro Beltrao3,5†, Martin Steinegger2,6,7†

1European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), UK, 2School of Biological Sciences, Seoul National University, South Korea, 3Department of Biology, Institute of 
Molecular Systems Biology, ETH Zurich, Switzerland, 4Department of Molecular Genetics, Weizmann Institute of Science, Israel, 5Swiss Institute of Bioinformatics, Switzerland, 6Artificial Intelligence Institute, 
Seoul National University, South Korea, 7Institute of Molecular Biology and Genetics, Seoul National University, South Korea.
*these authors contributed equally. †Correspondence to: beltrao@imsb.biol.ethz.ch, martin.steinegger@snu.ac.kr

De novo putative enzymes

Pipeline of darkening and result Human clusters’ function and LCA Pipeline of domain aligning and result

De novo cross-kingdom linkages De novo remote domain families

Remote domain familiy analysisTaxonomic analysisDark cluster analysis
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How we explored AlphaFold DB Pipeline of Clustering
High accuracy protein predicted structures of 
214 million entries were released as AlphaFold 
database (AFDB) in July 2022. Studying a 
database with this scale requires highly efficient 
methods. Here, we developed  structural 
alignment based clustering algorithm - Foldseek 
cluster. Using this method we have clustered all 
structures in AFDB, identifying 2.27M 
non-singleton structural clusters. The clusters 
were analyzed in three different ways - dark 
clusters, taxonomy, domain families by 
all-against-all structure alignment - to bring 
interesting proteins that evoke new knowledges 
about protein and biology.

Foldseek is a fast structural aligner which is 184,600 and 23,000 times faster than Dali and 
TM-align. Foldseek cluster is a clustering algorithm based on Foldseek and Linclust (linear time 
clustering method) which can cluster hundreds of millions of structures.

MMseqs2 cluster
90% seq overlap
50% seq identity

214M proteins
AFDB

52.3M clusters
AFDB50

18.8M cluster
Foldseek clusters

Foldseek cluster
90% structure overlap

E-value < 0.01
Representative
highest pLDDT

Remove
fragments and

singletons
fragment

2.30M cluster
AFDB clusters

Histone H2B type 2-E1
GO : nucleus

Bacterial histone

A0A2R8Y619 (Human)
A0A1G5ASE0 (Bacteria)

ribonucleotide binding
Predicted GO:0032553
A0A849ZK06

transporter activity
Predicted GO:0005215
A0A849TG76

Anthrax-toxA like domains
A cluster enriched for Anthrax 
Pfam (PF03497) is related to 
not only clusters without Pfam 
annotations but also clusters 
with algae proteins

O14862 (Human)
A0A1C5UEQ5 (Bacteria)

A0A7S2NND9
(Not annotated)

A0A110BF64
(Anthrax_toxA)

Bacteiral immunity protein
Inteferon-inducible protein AIM2
GO: defense response to virus

New domain across kingdoms

B4E1T0 (Human)
A0A1F4ZDN5 (Bacteria)

Bacterial immunity protein
The human protein is CD4-like 
protein with 3 Pfams which are 
specific only to Eukaryotes. The 
bacterial protein was found in the 
same cluster w/o any Pfam.

The Frag1 domain in the brown 
protein was actually thought to 
be found only in Eukaryotes. But 
they have remote domains in 
Prokaryotes and Archea found 
by our domain analysis

Examples Examples

Other examples

Examples

Clusters where human is are investigated with Lowest 
Common Ancestor (LCA) and Gene Ontology (GO) of the 
human entry. We picked the examples from clusters where 
the GO of the human entry in the cluster is supposed to be 
found only in Eukaryota but found also in cellular organims.

The representatives of Foldseek clusters are used for 
all-against-all search. The aligned regions were used to 
make a structural relationship graph. By walktrap algorithm, 
the graph has turned into a set of clusters. Here, unannotated 
regions can reference annotated similar regions.

We found structurally and functionally unknown clusters 
among AFDB Clusters by searching them against Pfam, 
TIGRFAMs and PDB. Of the 712k dark clusters we predicted 
the functions and enzyme pocket by DeepFRI to find out de 
novo functional proteins.

Find your protein and your science!
All the examples presented in this poster can be found in 
this website. Here, you can explore the nearest clusters 
of your protein, excavate some dark proteins you can 
characterize or annotate domains of your protein by 
structural neighbors.
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MMseqs search 
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Predicting Intrinsically Disordered
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Benchmark 
with 9,056 known dimers

Screen alpha Synuclein against human proteome

Abstract ipTM above 0.65 
as a valid interaction

Candidates present in interaction database had higher ipTM

Intrinsically disordered proteins (IDPs) can form
stable structures upon interacting with partner
proteins. Studying these interactions is challenging
yet important for, e.g., developing targeted therapies
for IDP-related diseases.

Recent advances in protein structure prediction,
such as AlphaFold2[1], RoseTTAfold[2] and
AlphaFold-multimer[3], opened up new avenues for
investigating disordered protein interactions (DPIs).
Although AlphaFold2 can predict IDPs with low
certainty[4], the performance of AlphaFold-multimer
in predicting DPI remains unknown.
We extracted 40 DPIs from a dataset of 9,056 known
interacting dimers obtained from the Protein Data
Bank (PDB). Using AlphaFold-multimer-v2, we
predicted the structures of the DPI containing dimers
and evaluated the interface of the structures
comparing DockQ and interface-pTM (ipTM) scores.
Only three IDP dimers were predicted accurately, as
indicated by their high DockQ and interface-pTM
scores (ipTM). Nevertheless, correct and incorrect
predictions could be distinguished by utilizing an
ipTM cutoff value of 0.65.
Expanding our study, we focused on alpha-synuclein
(aSyn), a well-studied IDP with obscure interaction
partners. Using AlphaFold-multimer-v3, we screened
aSyn’s interactions with 12,556 candidates in the
human proteome. To differentiate between the
presence and absence of interactions, we leveraged
the BioGRID database. Among the screened
partners, 147 were present in the database and
exhibited higher ipTM scores compared to the
absent partners.
Applying the threshold 0.65 for defining correct
interactions, we identified 14 valid present partners
(10%) and 552 valid absent partners (3-5%). Gene
set analysis revealed an abundance of correct
partners, particularly in the brain. This finding aligns
with the well-established enrichment of aSyn in the
brain.
Our approach showcases the effectiveness of
computational methods in identifying relevant targets
without relying on experimental structures. This
study contributes to a deeper understanding of their
functions and offers potential implications for the
development of targeted therapies against IDP-
related diseases. Furthermore, our methodology can
be expanded to explore other IDPs and larger
protein complexes.

Reference

Seongeun Kim1

Martin Steinegger1,2
1Interdisciplinary Program in Bioinformatics, 
2School of Biological Sciences, Seoul National University, Korea

DPI
Extraction

Multimer
Prediction

Monomer
Prediction

chain A chain B

pLDDT<50
structure transition

transition length≥10
in interface

X 40X 9,056

chain A
chain B

Disordered
Protein
Interaction

6m4v_D

6m4v_C

6m4v

PDB ID: 6m4v

Exploring AlphaFold2’s 
Capability in Predicting 
Intrinsically Disordered 
Protein Interactions

Present Absent Total

# of Candidates 147 12,409 12,556
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Petascale Search for Protein Structure 
Prediction 

SRA-enriched MSAs lead to better predictions
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The recent CASP15 competition highlighted
the critical role of multiple sequence
alignments (MSAs) in protein structure
prediction, as demonstrated by the success
of the top AlphaFold2-based prediction
methods. To push the boundaries of MSA
utilization, we conducted a petabase-scale
search of the Sequence Read Archive (SRA),
resulting in gigabytes of aligned homologs for
CASP15 targets. These were merged with
default MSAs produced by ColabFold-search
and provided to ColabFold-predict. By using
SRA data, we achieved a high accuracy
(GDT_TS > 70) for 66% of the non-easy
targets, whereas using ColabFold-search
default MSAs scored highly in only 52%.
Next, we tested the effect of deep homology
search and ColabFold's advanced features,
such as more recycles, on prediction
accuracy. While SRA homologs were most
significant for improving ColabFold’s CASP15
ranking from 11th to 3rd place, other
strategies contributed too.

Abstract

Deep & wide sequence search for structure prediction

Structure prediction performance

Download Poster ( PDF )

cfdb: ColabFoldDB,  hh: HHblits, temp: templates, mult: multimer, recyc: #recycle

Strategies Avg. 
GDT_TS

Sum 
Z (>0.0)

CFDB 65.80 17.09

SRA_CFDB 70.97 30.30

HH_CFDB 67.36 15.82

HH_SRA_CFDB 71.44 26.32

SRA_CFDB_temp 70.94 31.60

SRA_CFDB_mult 70.98 30.97

SRA_CFDB_recyc 75.54 40.59

Model1 75.56 40.56

TBM-target : Template-based modeling target FM-target : Free-modeling target
GDT_TS (Global Distance Test): Assessment criteria to quantize predicted protein structure score in CASP

Model 1 : predicted best strategies based on highest pLDDT

ColabFold CASP15 rank: 11th to 3rd

https://www.biorxiv.org/content/10.1101/2023.07.10.548308v1
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Foldcomp – python API
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Foldcomp – python API
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Direct feature extraction

Foldcomp – additional features
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